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AN ASSESSMENT OF LINEAR VERSUS NON-LINEAR MULTIGRID METHODS FOR

UNSTRUCTURED MESH SOLVERS

DIMITRI J. MAVRIPI,IS*

Abstract. The relative t)erfonnauce of a non-liuear FAS multigrid algoritlun and ml equivalent linear

nmltigrid algorithm for solving two different non-linear problems is investigated. The first case consists of a

transient radiation-diffusion problem for which an exact linearization is available, while the second problem

involves the solution of the steady-state Navier-Stokes equations, where a firsr_-order discrete Jacobim_ is

employed as an approximation to the Jacobian of a second-order accurate discretization. When an exact

linearization is employed, the linear and nnn-lincar multigrid methods converge at Mentical rates, asymp-

totically, and the linear method is found to be more efficient due to its lower cost per cycle. When an

approximate linearization is employed, a,s in the Navier-Stokes cases, the relative efficiency of the linear ap-

proach versus the non-linear approach tlel)(_nds bo_h on the degree to which the linear system approximates

the full Jacobian as well as the relative cost of linear versus non-linear multigrid cycles. For cases where

convergence is limited by a poor Jacobian approximation, substantial speedup can be obtained using either

multigrid method a_s a prectmditioner to a Newton-Krylov method.

Key words, unstrut:tured_ nmltigrid, Krylov

Subject classification. Applied and Numerical Mathematics

1. Introduction. Multigrid methods are well known as efficient solution techniques for both linear and

non-linear problems. As with many iterative solvers, multigrid methods can be used directly as non-linear

solvers [1, 4, 5], or as linear solvers operating on a linearization arising from a Newton solution strategy for

the non-linear problem at hand [25, 3, 18]. In addition, muItigrid can also be used as a linear or nelL-linear

preconditioner for a Newton-Krylov method [14, 2, 15].

Newton solution strategies for non-linear problems incorporating linear multigrid solvers may fail when

the initial guess is far removed from the domain of convergence of the non-linear problem, and globalization

methods may be required to ensure a convergent method. Non-linear multigrid methods overcome this

difficult,," by using a pseudo-time-stepping analogy on the non-linear problem directly [1, 5]. On the other

hand, non-linear multigrid methods may fail due to the non-existence of a solution to the physical problem

which is rediscretized on the coarse grid levels, particularly in the initial stages of convergence. However, for

various applications such as time-dependent problems, where the initial guess provided from the previous

time step is often within the non-linear convergence domain of the next time step, or steady-state problems

with mild non-linearities such as subsonic or transonic flows (as opposed to hypersonics), these issues are

often of minor importance.

Non-linear multigrid methods require the evaluation of the full non-linear residual at each iteration on

all grid levels, while linear multigrid methods replace these operations by matrix (Jacobian) vector products

at each iteration on all grid levels, with the evaluation of non-linear residuals only occurring on the fine grid
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at each outer Newtun iteration. One of the great advantages of non-linear nmltigrid methods is that they

obviate the need to form and store the Jacobian matrix associated with the Newton strategy. For many large-

scale unstructured mesh computations, where nlenlory is tile lilniting factor, non-linear nnlltigrid methods

are indeed the only viable solution strategies [13]. On the other hand. ill cases where the non-linear residual

evaluation is costly, linear multigrid methods may become more attractive on a cpu-time efficiency basis,

since for a fixed stencil, the cost of the Jacobian-vector products is fixed and independent of the cost of

nou-linear residual evahlations, the latter of which are only performed a Snlall mmlher of times in tile outer

Newton iteration. Of course this statement is only true provided the convergence of both methods is similar

on a multigrid iteration basis. In the asymptotic convergence region, where solution updates become small,

and the effect of non-linearities vanishes, it can be shown, and has been observed, that both methods converge

at tile same rates per multigrid cycle, provided equivalent iteration strategies are used ill both cases (linear

and non-linear Jacobi for example).

The above discussion is only valid in the case where an exact Newton linearization of the non-linear

problem is employed in the linear multigrid method, and an exact local linearization is used in the non-linear

method. For discretizations which are not confined to nearest-neighbor stencils, such a_ssecond-order accurate

convection operators which rely on distance-two neighbor stencils, the evaluation and storage costs of the

exact Jacobian become prohibitive, and simpler Jacobians based on first-order accurate nearest neighbor

stencils are most often employed. This practice, which (:an be thought of as a defect-correction scheme or a

preconditioning approach [11], ensures that quadratic convergence of the outer Newton iteration will never be

achieved, and hence that solution of the linear system to high tolerances even in the asymptotic convergence

range will be fiuittess. Therefore, the overall solution efficiency of a non-linear multigrid method versus a

linear nmltigrid method in such cases depends not only on the relative cost of non-linear residual evaluations

versus Jacobian-matrix vector products, but also on the degree to which a partial solution of the reduced

Jacobian system is successful in converging tile full non-linear system.

In the following paper we examine two problems which are solved with a non-linear flfll approximation

storage (FAS) nmltigrid method [1], a linear multigrid method, and nmltigrid preconditioned Newton-Krylov

methods. The first problem is a transient two-equation radiation diffusion model which contains strong non-

linearities, but for which an exact Jacobian can easily be constructed. The second problem is the solution of

the steady-state Euler and Navier-Stokes equations. In this case, the non-linearities are less pronounced for

the flow regimes considered than in the radiation problem, but a first-order accurate Jaeobian is used to solve

the second-order accurate discretization, for the reasons described above. While these two test problems selwe

to demonstrate two different situations for the comparison of linear versus non-linear nmltigrid methods, the

eventual solution of coupled radiation-hydrodynamic systems is also of interest.

2. Linear and Non-Linear MG Formulations. The goal of any multigrid method is to accelerate

tile sohltiou of a fine grid prolllenl by computing corrections on a coarser grid and then interpolating them

back to the fine grid problem. Although this procedure is described in a two grid context, it is applied

recursively on a complete sequence of fine and coarser grid levels. 'Ib apply a linear multigrid method to a

non-linear problem, a linearization must first be performed. Thus, if the equations to be solved are written

8us

(2.1) Rh(w .... t) = 0

with the current estimate w yielding the non-linear residual r:



(2.2) Rh(Wh) = r

the Newton linearization of this system is taken as

0Rh Awh = -r
(2.3)

This represents a linear set of equations in the solution variable Awh (the correction), to which a linear

multi_id (i.e. MG correction scheme) can be applied. In this case, the coarse grid equation reads:

0RH AWH H
(2.4) 0WH = -Ih r)t ....

where H and h represent coarse grid and fine grid values, respectively, and Iff represents the restriction

operator which interpolates the fine grid residuals to the coarse grid. The residual of the linear system on

the fine grid is given by

i)Rh Awh + r
(2.5) rn .... -- 0Wh

and may be approximated as

(2.6) rn .... _ R(w + Aw)

where Rh refers to the non-linear residual, as previously. The coarse grid corrections AWH which are

obtained by solving equation (2.4) are initialized on the coarse grid as zero. After the solution of equation

(2.4), these corrections are prolongated or interpolated back to the fine grid.

Alternatively, a non-linear FAS multigrid scheme can be used to solve equation (2.1) directly without

resorting to a linearization. In this case, the FAS coarse grid equation reads:

(2.7) RH(WH) = RH(/ffmh) -- IIHr

where the term on the right-hand side is often referred to as the defect-correction [1, 11]. RH represents the

coarse grid discretization and lff and iff denote the restriction operators which are now used to interpolate

residuals as well as flow variables from the fine grid to the coarse grids. In principal, different restriction

operators for residuals and variables may be employed. If equation (2.7) is re-written as:

(2.8) RH(U,H)- RH(iffwh) = --lhHr

the right hand sides of equations (2.4) and (2.8) represent similar approximations of the restricted non-

linear residual, in view of equation (2.6) and the fact that these restricted residuals in the FAS scheme are

always evaluated at, the nlost recently available fine grid updates. Therefore, by equating the left, haml sides

of equations (2.4) and (2.8), the equivalence between the linear multigrid scheme and the non-linear FAS

scheme is seen to be given by:



(2.9) Rn(w11)- RH(T_wh)_ 0RH Awn

wbi_-h meal, s that tJJe EalS mu]tigrid scheme corresponds to a_J approximation to a lJneaJ" multigrid seJmme,

where the coarse grid 3acohians are approximated by finite differencing the operator. Therefore, in the limit

of asymptotic convergence, i.e. when &wH < < 1, the two methods should yield similar convergence rates.

Note that the above discussion involves no specification of the coarse grid operator and .lacobian con-

struction. Therefore, a fair comparison of linear versus non-linear multigrid methods should utilize a similar

construction for both of these quantities in the respective algorithms.

3. Multigrid Algorithms. The two nmltigrid variants in,plemented in this work are based on the ag-

glomeration multigrid strategy. Agglomeration multigrid was originally developed for finite-volume schemes

[7, 22. 30], and is based on agglomerating or fusing together neighboring fine grid control-volumes to form

larger coarse grid control vohunes ms depicted in Figure a.l. This approach has since been generalized for

arbitrary discretizatiot_s foIMwirjg algebraic multigrid prittciples 19]. lit fact, agglomeratior_ multigrid can

be viewed as a simplification and extension of 'algebraic multigrid to non-linear systems of equations. The

control-volume agglomeration algorithm can be recast as a graph algorithm, similar to algebraic multigrid

methods, where the "seed" vertex initiating an agglomerated cell correspovds to a coarse grid point, and

the neighboring agglomerated points correspond to fine grid points, in the algebraic multigrid terminology

[20]. While weighted graph algorithms can be employed for agglomeration, these weights cannot depend on

solution values, as in the algebraic multigrid case, but only on grid metrics. In this manner, the coarse grid

levels are static and need only be constructed at the beginning of the simulation,

FIG. 3.1. Illustration of Agglomeration Multigrid

Coarse Level Construction

As in the algebraic multigrid case, agglomeration nmltigrid employs a Galerkin projection for the construction

of the coarse grid equations. Thus, the coarse grid operator is given by:

(a.:) ft. = t 'rt.r ,

where 1/_t is the restriction operator, and Ih is the prolongation operator, and both operators are taken Ks

piecewise constants. This simple construction applies equally to linear and non-linear operators, and reduces

to forming the coarse grid equation at an a_lomerated cell as the sum of the fine grid equations at each fine



gridcellcontainedin thecoarsegrid(:ellThenon-linearitiesin theoperatorareevaluatedusingsolution
variablesonthecoarsegridinterpolatedupfromthefinegrid.

Give1L this nmltigrid infrastructure, two particular algorithlns which differ mainly ill tile manner in

which non-linearities are handled are developed for comparison. The first involves a standard non-linear

FAS multigrid algorithm, and the second involves a linear multigrid algorithm applied to the linearization

of the governing equations.

3.1. FAS Scheme. In the non-linear FAS multigrid algorithm, equation (2.1) is solved directly. The

coarse grid equations are formed by Galerkin projection (c.f. equation (3.1)) and the non-linearities in the

coarse grid operator are evaluated using coarse level solution variables interpolated up from the fine grid

using the l-ff restriction operator (as per equation (2.8)). On each grid level, the discrete equations are

solved using a Jaeobi preconditioned multi-stage time-stepping scheme (for the Navier-Stokes equations)

[16, 27, 26, 10] or a non-linear block Jaeobi iteration which can be written as:

(3._) W new = W °ld J- IDl-lR(w °ld)

where [D] represents the block diagonal of the Jacobian matrix. This smoother constitutes a non-linear

solver, since the non-linear residual is updated at each stage, and incurs mininmm memory overheads since

only the storage of the block matrix [D] representing tim coupling I)etw_en the solution variahles at each grid

point is required. This scheme is equivalent to a single stage Jacobi preconditioned multi-stage time-stepping

scheme.

3.2. Linear Multigrid Scheme. The linear multigrid scheme solves equation (2.3) on the fine grid,

and equation (2.4) on the coarse levels. On the fine grid, the Jacobian _ is formed by explicitly differenti-
0w h

ating (hand coding) the discrete operator Rh. On the coarse levels, for consistency with the FAS nndtigrid

algorithm, the Jacobian is taken as the explicit differentiation of the coarse non-linear operator obtained

by Galerkin approximation (c.f. equation (3.1)). Thus flow variables as well as residuals are restricted to

the coarser grids, but, the non-linear residuals on these coarser levels are not evaluated, only the .Iacobians

corresponding to the linearization of the non-linear coarse level residuals. These coarse level Jacobians are

evaluated at the beginning of the solution phase for the non-linear time-step problem, and are then held

fixed throughout the linear multigrid iterations. The multi-level linear system constructed in this manner

more closely approximates the equivalent FAS scheme, as opposed to the more traditional approach of ag-

glomerating the fine grid Jacobian terms directly. Memory requirements for the linear multigrid scheme are

increased over those of the FAS scheme due to the required storage of the fine and coarse level Jacobians.

An outer Newton iteration is employed to solve the complete non-linear problem R(w) = 0. Within each

Newton iteration, the linear system defined by equation (2.3) is solved by the linear multigrid algorithm.

This provides a fine grid correction Aw which is then used to update the non-linear residual. These non-

linear iterations converge quadratically provided the linear system is solved to sufficient toleram'e and a

consistent linearization is employed. When approximate Jacobian representations are employed, such a.s in

the Navier-Stokes equations, slower convergence of this outer iterative procedure is obtained.

On each grid level the linear mu]tigrid scheme solves the linear system using a block-Jacobi smoother.

If the Jacobian is divided up into diagonal and off-diagonal block components, labeled as [D] and [O],

respectively, the Jacobi iteration can be written as:

(3.3) [D]AWh n÷l : -r- [O]Awh n



where _,wh n represents corrections from the previous linear iteration, and Awh TM represents the new

linear corrections produced by the current linear iteration. At each linear iteration, the solution of equation

(3.3) requires the inversion of the block matrix [D] at each grid point. The linear corrections Awh are

initialized to zero at the first iteration on each grid level. Therefore, this linear iteration strategy reduces to

the non-linear Jacobi scheme described above in the event only a single linear iteration is employed.

In contrast to the non-linear FAS multigrid algorithm, the residuals, jacobians (i.e. [D] and [O] terms),

and the variables interpolated up to the coarse grids are only evaluated at the start of the non-linear iteration,

and are held fixed during all inner linear nmltigrid cycles witlfin a non-linear iteration.

4. Radiation Diffusion Problem. The non-equilibrium radiation diffusion equations can be written

a8

OE

Ot
-- - _.(D,,VE) = ua(T 4 -- E)

(4.1)

with

OT

Ot
-- - V.(DtVT) = -(Ta(T 4 - E)

z 3 1 Dr(T) = t_T_
o. = _, D_(r. E) = 3_ + ;EoL'o,_['

Here, E represents the photon energy, T is the material temperature, and _ is the nlaterial conductivity.

In the non-equilibrium case, the non-linear source terms on the right-hand-side are non-zero and govern

the transfer of energy between the radiation field and material temperature. Additional non-linearities are

generated by the particular form of the diffi_sion coefficients, which are flmctions of the E and T variables.

]b_n [ which refers to the gradient ofIn particular, the energy diffusion coefficient, D,(T, E) contains the terqn oE

E in the direction normal to the cell interface (in the direction of the flux). This limiter term is an artificial

means of ensuring physically meaningfifl energy propagation speeds (i.e. no larger than the speed of light)

[2, 6, 14]. The atonfic number z is a material coefficient, and while it may be highly variable, it is only a

fimction of position (i.e. z = f(x,y) in two dimensions).

Equations (4.1) represent a system of coupled non-linear partial-differential equations which must be

discretized in space and time. Spatial discretization on two-dimensional triangular meshes is achieved by

a Galerkin finite-element procedure, assmning linear variations of E and T over a triangular element. The

non-linear diffusion coefficients are evaluated by first computing an average T and E value along a triangle

edge, and then computing the non-linear diffusion coefficient at the edge midpoint using these averaged

values. The gradient of E in the D,. diffusion coefficient is also taken as a one dimensional gradient along

the direction of the stencil edge. The source terms are evaluated using the local vertex values of E and T

exclusively, rather than considering linear variations of these variables.

The time derivatives are discretized as first-order backwards differences, with lumping of the mass matrix,

leading to an implicit scheme which requires the solution of a non-linear problem at each time step. This

approach is first-order accurate in time, and is chosen merely for convenience: since the principal objective

is the study of the solution of the non-linear system.



TheJacobianoftherequiredlinearizationsisobtainedbydifferentiation(handcoding)ofthediscrete
non-linearresidua].Becausethespatialdiscretizationinvolvesanearestneighborstencil,theJacobiancanbe
expressedonthesainegraphastheresi<lualdiscretization,whichcorrespondstotheedgesoftiletriangular
grid.Theinitialguessforthesolutionofthenon-linearproblemateachtime-stepistakenasthesolution
obtainedattheprevioustime-step.

Thetestcasechosenforthisworkistakenfrom[14]anddepictedinFigure4.1.Weconsideraunitsquare
domainoftwodissimilarmaterials,wherettleouterregioncontainsanatomicnmnberofz = 1 and the imler

regions (1/3 < x < 2/3), (1/3 < y < 2/3) contains an atomic number of z = 10. The top and bottom walls

are insulated, and the inlet and outlet boundaries are specified using mixed (Robin) boundary conditions,

as shown in the figure. This domain is discretized using a triangular grid containing 7,502 vertices, shown

in Figure 4.2. This grid conforms to tile material interface bomldaries in snch a way that no triangle edges

cross this boundary.

Figure 4.3 illustrates a typical simulation for this case. Incoming radiation sets up a traveling thermal

front in the material, the progress of which is impeded by the region of higher atomic number z. At critical

times in tile simulation, the diffusion coefficients can vary by up to six orders of magnitude near the material

interfaces, thus providing a challenging non-linear behavior for the multigrid algorithms. At each physical

time step, a non-linear problem must be solved. It is the solution of this transient nou-linear problem at

a given time step which forms the test problem for the two agglomeration multigrid algorithms. Clearly,

the size of the physical time step affects the stiffness of the non-linear problem to be solved, with smaller

physical time-steps leading to more rapidly converging systems. The non-dimensional time-step chosen in

this sinmlation was taken as 0.01. This constitutes a rather large value compared to those employed in

reference [14] (usually of the order of 10 -3) and may have au adverse effect on overall temporal accuracy,

but provides a more stringent test case for the muhigrid soh'ers. Of the order of 1000 time steps are required

to propagate the thermal front fi'om the inlet to outlet boundary in the current sinlulation.

E + 1_=I

4 6¢

F3=0 Ty=O

Z=I

I
!
; I E- /Ex--0

6c

Ey = 0 Ty= 0

FIG 4.1. Sample test problem [or non-linear

radiation-diffusion equations

Fro. 4.2, Illustration o] unstructured grid for non-

linear radiation-diffusion problem: 7,50_ vertices



FIG. 4.3. Illustration of solution [or non-linear

_udiation-diff_Lsion problem: Contours of T

Table 4.1 depicts the relative time required for a non-linear residual evaluation on tile fine grid, assembly

of the various Jacobian matrix entries on the fine grid, and timings for various c.omponents of the linear and

non-linear multigrid algorithms. The residual and Jacobian terms are assembled within the same loop for

cactm efficiency ree_sons, and minimal incremental work is incurred for comtmting tile additional off-diagonal

Jacobian terms, required for the linear muhigrid scheme. This is due to the fact that much of the block

diagonal (point) Jacobian terms consist of the stun of the corresponding off-diagonal Jacobian terms, and

thus require the same computations. For both linear and non-linear schemes: the block diagonal Jacobians

must be inverted, as shown in equations (3.2) and (3.3). For multiple .lacobi sweeps, the LU decomposition

of these block matrices is formed ol, the first pass, al,d then frozen for subsequent passes. Thus the first

linear or non-linear Jacobi iteration incurs additional cost over subsequent passes, as depicted in the table.

The timings illustrate the lower cost of the linear iterations, which are up to five times faster than the

corresponding non-linear iterations. In the non-linear c_se, the initial iteration involves the computation

of a non-linear residual, the diagonal Jacobian terms, and the LU decomposition of these Jacobians, while

subsequent iterations only require the evaluation of the non-linear residuals. In the linear case, the first

iteration includes the LU decomposition of the point .lacobians, but does not include residual and .laeobian

construction timings, (which are relegated to the outer Newton iteration). From tile table, tile non-linear

FAS multigrid cycle is se,e,n to require four times more cpu time than the equivalent linear multigrid cycle.

In this case, a 4-level W(3,0) saw-tooth cycle was used, with three (linear or non-linear) Jaeobi iterations

perfotTned on earh lew;l when going from fine to coarse lexels. These timings do not include the outer Newton

iteration in tile linear case, which incurs a non-linear residual evaluation and Jacobian construction, noting

that this expense may be aanortized over a variable number of linear multigrid cycles.



TABLE 4 1

Relative CPU Time Required for Various Components

of Linear and Non-Linear Multi9rid Methods for Radiation

Diffusion Problem

Component Normalized Timing

Not_-l,inear Residual

Residual + Point dacobians

Residual + Entire Jacobian

1st Stage Non-Linear Sweep

Add. Stages Non-Lin. Sweeps

1st Linear Jaeobi Sweep

Incr. Linear Jacobi Sweeps

FAS MG Cycle

Linear MG Cycle

1.0

2.52

2.82

2.82

1.07

0.364

0.173

13.04

3.31
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Figure 4.4 provides a (:onq)arison of tile convergence rates of tile linear and non-linear multigrid schemes

in terms of the number of multigrid cycles. The four-level _A:(3,0) saw-tooth cycle described above is employed

in both cases. For the linear scheme, three linear multigrid cycles are employed for each Newton update,

and the convergence history of the linear residual is plotted alongside that of the non-linear residual. As

expected, quadratic convergence of the non-linear residual is initially observed in the linear-mnltigrid-Newton

scheme, l[owcver, this quadratic behavior is lost after four Newton iterations, due to the inexact solution

of the linear problem (using three multigrid cycles). In this region, the convergence rate of the outer non-

linear Newton sclleme be,comes governe(l or limited by the convergence of the inner linear problem. In the

quadratic convergence region, ea_ch time the non-linear residual is updated, the linear residual increases

slightly, before resuming its downwards trend. In the asymptotic region, the linear and non-linear residuals

become approximately equal, as expected from equation (2.6). In this region, the convergence of the non-

linear FAS multigrid scheme and the linear multigrid schen,e become e(lnivalent, in terms of the nmnber

of multigrid cycles, as expected from equation (2.9). The fact that the lincar multigrid convergence plot

lies slightly to the right of the FAS convergence curve is due to the additional effort spent solving the

linear system in the initial phases of slow non-linear convergence. Figure 4.5 further illustrates this point,

by comparing the convergence history for the san)e approach using five linear multigrid cycles per Newton

iteration. In this case, the final asymptotic convergence rate is similar, but is reached at a later stage and

with _utditional numbers of multigrid sweeps due to increased oversolving of the linear system in the initial

stages of non-linear convergence. Adaptive convergence criteria for the linear system can clearly aid in

reducing oversolution of the linear system, although this has not been considered in this work.

Figure 4.6 compares the convergence efficiencies of the non-linear FAS multigrid approach with the

linear multigrid approach using three, multigrid cycles per Newton iteration, in terms of cpu time. The linear

multigrid method is over three times more efficient, which can I)e e[ltirely attril)uted to the lower eost per

multigrid cycle of the linear multigrid scheme.

5. Sohltion of Steady-State Navier-Stokes Equations. The Navier-Stokes equations are dis

cretized on mixed triangular-quadrilateral meshes using a vertex-based approach where the flow variables are

stored at the grid vertices. Median-dual control volumes are constructed around each vertex, and fluxes at

control volume interfaces are evaluated using a Roe approximate Rieman solver [19]. Second-order accuracy

l0



isobtainedthroughasimplifiedgradientreconstructiontechniquewhichresultsinadistance-twoneighbor
stencil.Viscoustermsareconstructedasdiffusionoperatorsinvolvingnearestneighborstencils.Forinviscid
flowsimulations,theviscousfluxesareneglected,whileforviscousturbulentflowsthesetermsareretained,
andtileinfluenceofturbulenceissimulatedusingtileSpalart-Alhnara_one equation turbulence model [23].

The turbulence equation is discretized in the same manner as the flow equations, with the exception that

the convective terms are only first-order accurate. The turbulence equation is solved simultaneously but

uncoupled flom the flow equations using the stone multigrid algorithnt.

The non-linear FAS nmltigrid solver employs a nmlti-stage time-stepping scheme as a smoother on all grid

levels, which requires the evaluation of the non-linear residual at each stage. While the fine grid equations are

diseretized to second-order accuracy, the coarse level equations are only discretized to first-order accuracy.

This simplifies their implementation on the coarse level agglomerated graphs, and is consistent with practices

used on structured geometric multigrid solvers for similar problems [5, 9]. Local preconditioning is applied

to the multistage scheme by pre-multiplying the non-linear residual by the inverted block diagonal Jacobian

matrix at each stage [16, 27, 26, 10]. This is equivalent to a (scaled) non-linear .lacobi iteration at each stage.

For viscous flows, line preconditioning is employed, which involves inverting the block tridiagonal Jacobian

entries along lines constructed in boundary layer regions (c.f. Figure 5.5) [10. 12]. This corresponds to a non-

linear iterative line solution technique which can be described by equation (3.2) where [D] now represents the

line .lacobians. instead of the diagonal elements. In isotropic grid regions, the lines reduce to a single point

and the line preconditioning becomes equivalent to Jacobi prec(mditioning. In all eases, the local Jacobian

entries correspond to those derived from a first-order discretization. The LU decomposition of these local

Jacobians is performed on the first stage of the nmlti-stage scheme and then frozen for the subsequent stages

of the scheme, thus amortizing the LU decomposition cost over nmltiple stages.

The lincar multigrid method operates on the discrete Jacobian of the first-order discretization of the

non-linear flow equations, although tile fine grid flow equations are diseretized to second-order accuracy.

Non-linear residuals are only evaluated on the fine grid at the begimfing of each linear sohltion phase,

which may involve multiple linear nmltigrid sweeps. Coarse grid Jacobians are ohtained by linearizing the

non-linear coarse grid agglomerated operator, in order to provide a more consistent comparison between

equivalent linear and non-linear methods. On each grid level, multiple passes of a linear 3aeobi or Gauss-

Seidel smoother are employed for inviscid flows. For viscous flows, multiple passes of a linear line solver

are employed, following equation (3.3), where [D] corresponds to the block tridiagonal Jacobians taken

along the set of lines constructed in the grid, and [O] corresponds to the remaining Jacobian entries. The

Jaeobi implementations of point and line algorithms correspond to the linear counterparts of the non-linear

smoothers used in the FAS multigrid algorithm. In the Gauss-Seidel implenmntation, lines and points are

pre-sorted in increasing x-direction, and sweeps using latest a_-ailable updates are performed on the grid in

increasing and decreasing x direction at odd and even smoothing passes, respectively. When multiple linear

smoothing passes are employed, the LU decomposition of the local point or line Jacobians is performed on

tile first pass and then frozen for suhsequent passes.



TABLE 5 1

Relative CPU Time Required for Various Components

of Linear and Non-Linear Multigr_d Methods for Inviscid

Fluid Flow Problem

Component (Euler) Normalized Tinting

Non-lAnear Residual

Residual + Line Jacobians

Residual + Entire Jacobian

1st Stage Non-Linear Swap

Add. Stages Non-Lin. Sweeps

1st Linear GS Sweep

Incr. Lineal" GS Sweeps

3-stage FAS MG Cycle

5-stage FAS MG Cycle

Linear MG Cycle (1 W cycle)

Linear MG Cycle (2 W cycles)

1.0

1.62

1.86

1.96

1.26

0.43

0.38

8.92

9.86

5.70

8.98

TABLE 5.2

Relative (JPU Time Required for Various Uomponents

of Linear and Non-Linear Multigrid Methods for Viscous

Fluid Flow Problem

Conq)onent (Navier-Stokes) Normalized Timing

Non-Linear Residual

Residual + Line Jacobians

Residual + Entire Jacobiau

1st Stage Non-Linear Sweep

Add. Stages Non-Lin. Sweeps

1st Linear GS Sweep

Add. Linear GS Sweeps

3-stage FAS MG Cycle

5-stage FAS MG Cycle

Linear MG Cycle (1 W cycle)

Linear MG Cycle (2 W cycles)

1.17

2.13

2.39

2.44

1.44

0.43

0.38

10.4

11.3

6.3

9.6

For the inviscid case, an isotropic coarsening strategy which results in a coarsening ratio of 4:1 is

employed for generating coarse agglomerated levels, while a directional coarsening strategy which proceeds

in the direction of the implicit lines is emtfloyed in the viscous flow cases, also yiehling a 4:1 reduction in

complexity between fine and coarse levels [10, 12].
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Tables 5.1 and 5.2 depict the relative cpu times required for the various components of the linear and

non-linear algorithms on the grid of Figure 5.4. for both inviscid Euler computations and viscous Navier

Stokes computations. Both a three stage [10, 28] and a five stage [8] non-linear snloother are examined.

Tile time required for' the 5-stage smoother increeuses only moderately over that required for tile 3-stage

scheme, due to the fact that the local Jacobian LU decomposition is only performed once for each scheme,

and the dissipative terms are only evaluated three times for both schemes (at odd stages only for the 5-

stage sehenle) [8]. Assembly of tile complete .lacol)ian require(l for' tile linear scheme incurs relatively little

extra overhead over that required for assembling tile point or line Jacobians, sitnce many of tile same terms

required for the point Jacobians can be used in these additional off-diagonal Jacobian elements. Both linear

and non-linear smoothers involve additional startup cost on the first smoothing pass, due to the need to

perform tile LU deconlpositi(m of the local .laeobians, which are frozen on suhsequent passes. The .lacotli

(not shown) and Gauss-Seidel variants of each linear solver are approximately equivalent in overall cost, and

can be seen to be approximately four times less costly than the equivalent non-linear solver, mainly due

to the fact that these smoothers avoid evaluation of the non-linear residual. Overall, a non-linear update

using a single linear nmltigrid W-saw-tooth-cycle, with 4 Gauss-Seidel smoothing sweeps on eacln grid level,

requires approximately 60_ of the effort of a three-stage I_AS scheme. Using two linear multigrid cycles

per non-linear update results in a non-linear update cost approximately equal to that observed with the

a-stage FAS scheme for the inviscid flow ea.se. The linear method efficiency advantage is slightly higher in

the viscous flow case, since the non-linear residual is now augmented by the additional viscous terms which

must be computed, while the linear smoother remains identical in cost since the stencil is unchanged from

the inviscid case.

Tile inviscid test case consists of flow over a NACA 0012 airfoil at a Math nuniber of 0.8 and an incidence

of 1.25 degrees. This well known test case produces a strong upper surface shock and a weaker lower surface

shock. The unstructured triangular mesh for tiffs case contains a total of 7,884 vertices. Figure 5.1 depicts

the observed convergence rates for this case with the various schelnes disc:ussed above, compared iu terms

of cpu time required for a given level of reduction in the rms average of density residuals. A four level

W-cycle was used for both multigrid schemes. The figure shows the linear multigrid approach, using a single

W-cycle with four Gauss-Seidel smoothing passes, is approximately twice _ efficient as the three-stage FAS

scheme. The inerease in efficiency between the Gauss-Seidel and Jaeobi linear multigrid algorithms is due

to the superior convergence properties of Gauss-Seidel over Jacobi, since both sweeps require approximately

the same amount of cpu time. The 5-stage FAS scheme is slightly more efficient than the 3 stage scheme, as

much of the local .]acobian LU decomposition and multigrid overhead is amortized over more grid sweeps.

Figure 5.2 illustrates tile non-linear convergence rates achieved for the linear multigrid scheme per non-

linear update, as a function of the number of linear multigrid cycles. The non-linear convergence rate h_s

a lower bound which is approached as the number of linear multigrid cycles is increased and the linear

system is solved more exactly. This asymptotic rate, which is in the neighborhood of 0.78, can be viewed

a.s a nlea,sure to wtfich tile first-order Jacobian approximates tile seconll-order discretization. (Qualtratic

convergence would be observed for an exact match). Note that only two linear W-cycles are effective at

achieving most of this non-linear convergence, although the scheme using a single linear multigrid cycle is

tile nlost efficient overall, as shown in Figure 5.1. lnlproving tile convergence past this threshold cannot lie

achieved witil better linear solvers, but only through a nlore accurate Jacohian representatiorl.

One way to achieve this is to use a matrix-free Newton-l(rylov method [21, 15, 29] to approximate the

exact Jacobian of the finll second-order accurate residual. The linear multigrid solver proxddes a natural
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candidate for a preconditioner of the Newton-I(rylov method. The non-linear GM RES routine developed by

Wigton and Yu [31] is employed for this purpose. This approach, which corresponds to a left-preconditioning

strategy [21], also allows the use (ff a non-linear solver as a preeonditioner, and hence the FAS n,ultigrid

solver is also implemented as a lneconditioner for GMRES. Very rapid convergence in terms of non-linear

updates is observed in Figure 5.2 when the Newton-Krylov method (using ten search directions) is applied

with the linear multigrid me_hod ms a preconditioner. Figure 5.3 illustrates the convergence obtained with

both multigrid schemes employed as solvers and as precomlitioners for GMRES, using ten search directions,

in terms of cpu time. The improvenmnt is less dramatic when mea.sured in this manner, since each non-lit,ear

update involves ten multigrid cycles, llowever, the Newton-Krylov method provides similar overall gains in

efficiency for both the linear m_d non-linear schemes, particularly in the asymptotic convergence region.
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The next test ease involves the comtmtation of viscous tm'bulent transonic flow over an RAE 2822 airfl)il

at a Math number of 0.73, and incidence of 2.31 degrees, and a Reynolds number of 6.5 million on the grid

depicted in Figure 5.4. This grid contains a total of 16,167 vertices, and makes use of quadrilaterals in the

highly stretched boundary layer and wake regions, and triangles in isotropic regions. The linear and non-
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linearlinealgorithmsareusedinthiscaseonthesetoflinesdepictedinFigure5.5,whichwereconstructed
usingapreviouslydevelopedgraphalgorithm[10].Theflowfieldwasinitializedwithfreestreamconditions
andtheturbulencemodelisconvergedsinndtanoouslywithtileriowequations.Figure5.6illustratesthe
overallconvergenceofthevariousalgorithmsversusthenutnberofnon-lineariterations.In this ease, a

single linear W-cycle using four Jacobi smoothing passes on each level provides an asymptotically faster

convergence rate per cycle than either FAS scheme, while the Gauss-Seidel version of this scheme is even

faster. _g]len these schemes are compared in terlns of ClpU time in Figure 5.7, the lineax Gauss-Seidel scheme

is throe times tnore efficient than either non-linear FAS scheme, due to the superior convergence rate, as well

as the lower cost per cycle of the linear multigrid scheme.

Fl(;. 5.4. Illustration of Unstructu_d Grid for Vis-

cous Flour over Airfoil (16,167 points)

FI(;. 5.5. Illustration of Line Structure for Line Solver

for Viscous Flow over Airfoil
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Figure 5.8 illustrates the increas_d convergence efficiency when using the linear or non-linear multigrid

scheme as a preconditioner for GMRES, employing ten search directions. Similar increases in convergence

efficiency are obtained in both cases, with the non-linear scheme benefiting slightly more than the linear

scheme. However, the linear multigrid preconditioned GMRES approach remains the overall most efficient

solution technique.

The final test case involves subsonic viscous flow over a tahiti-element airfoil. The grid and associated line

system are depicted in Figures 5.9 and 5.10. This mesh contains a total of 61,104 vertices, with quadrilateral

elements in the boundary layer and wake regions, and triangular elements elsewhere. The Mach number

for this case is 0.2, the incidence is 16 degrees, and the Reynolds number is 9 million. For this case,

the Rienlan solver is modified according to the low-Math number preconditioning techniques developed

previously [10, 26, 17]. The final computed solution in terms of Mach mnnber contours is depicted in Figure

5.11. Complex cases of this nature have proved to be the most difficult to converge efficiently in past

studies [10]. A 5 level W-cycle is used in all cases for the multigrid algorithms. The flowfield is initialized

with a pre-converged solution obtained after 150 cycles of the FAS multigrid scheme (itself initialized from

freestream conditions), and the tuTbuletw.e model is frozen at its final converged values throughout these

computations. This is done in order to focus on the asymptotic convergence behavior of the linear versus

non-linear methods, and to avoid the complications of non-linear continuation which are required in this case

for the linear solver operating on a freestreanl initialization.

In Figure 5.12 the relative convergence efficiencies of tile linear and non-linear methods are displayed,

as a function of the number of non-linear iterations. Although the linear multigrid scheme using a single

W-cycle (with 4 Gauss-Seidel smoothing passes) initially converges faster than the 3-stage FAS scheme, the

latter achieves a slightly faster a,symptotic rate of convergence. However, both methods are ahnost equivalent

asymptotically in terms of epu time, since the linear multigrid method provides lower cost multigrid sweeps,

as shown in Figure 5.13. In both cases, the overall convergence rate is over six times slower than that

observed in the previous two cases. Solving the linear system to completion at each non-linear update (using

20 linear W-cycles) produces no observable benefit in non-linear convergence rate, as depicted in Figure 5.12.

This indicates that the slower convergence in this case is attributable to a poor approximation of the full

.lacobian by the reduced first-order Jacobian used in the linear multigrid scheme. Using either the non-linear
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or the linear multigrid solw_r as a preconditioner for GMRES with 20 search directions_ produces a sizable

increase in speed of convergence, as shown in Figure 6.13. However, the speedup is more pronounced in

the case of the lil,ear multigrid solver, where the Krylov method produces a factor of 2.,5 increase in overall

convergence per cpu time.

FIG. 5.9. Illustration of Unstructured Grid fl_r Vis-

cous Flow over Three-Element Airfoil (61,104 points)

Fxo. 5. t0. Illustration of Implicit Lines for Viscous

Flow over 7'hree-tglement Airfoil

FIG. 5.1 1. Computed Math Contours for Viscous

Flow over Three-Element Airfoil
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Upon initiating the Krylov method, a large jump in the residuals is observed, which is attributed to the

fact that the current Newton-Krylov method operates on the preconditioned residual (i.e. left precondition-

ing). When the convergence history is plotted in terms of the preconditioned residual, which corresponds to

the non-linear corrections produced by the multigrid scheme, a monotone behavior is observed. However.

a.s can be seen from these two plots, conclusioas concerning the relative solution efficiency of the various

schemes may be a function of the particular measure of convergence.

Table 5.3 illustrates the asymptotic convergence rates achieved by the linear multigrid scheme for all

three cases when the linear system is solved to completion at each non-linear update. This represents a lower

limit achievable with the multigrid schemes as solvers, and is due to the difference between the true Jacobian

of the second order discretization, and the approximate first-order Jacobian employed in the linearization for

the linear multigrid scheme, which is also used in the local Jacobians and coarse levels for the FAS multigrid

Sc_lerne.

This rate is seen to be substantially slower for the last case, indicating that convergence difficulties i_t

this case cannot be addressed through improved linear mu/tigrid methods or, for that matter, any linear
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solver based on the first-order Jacobian. Hence, improved restriction, prolongation, coarse grid operators,

or agglomeration techniques will have little effect in this case, and future research should concentrate either

oil better full Jacol)ian approximations, or inlproved Krylov methods.

TAm,v, 5.3

Asymptotic Convergence Rates Observed for Various

Cases when Linear System Solved to Cornpb:t_on at Each

Non-Linear Ileration

Case Asymptotic tLate

NACA 0012 Euler Transonic 0.78

RAE 2822 NS Transonic 0.76

Multi-Element NS Subsonic 0.965

6. Conclusions. The preceding examples demonstrate how linear multigrid methods can deliver supe-

rior asymptotic convergence efficiency over non-linear multigrid methods for fluid flow or radiation diffusion

prohlems. When exact .lacobians are available, similar asymptotic convergence rates per multigrid cycle are

observed for equi_,'alent linear and non-linear multigrid methods. The efficiency gains of the linear methods

are largely attributed to the reduced number of costly non-linear residual ewduations required, and the abil-

ity to employ a linear Gauss-Seidel smoother in the place of a Jacobi smoother. Therefore, in cases where

costly or complicated non linear discretizations are employed, the use of linear methods can be advantageous.

Additional convergence acceleration can be achieved by using both linear and non-linear methods as

preconditioners to a Newton-Krylov method. This approach is particularly beneficial in cases where an

inaccurate linearization is employed by the multigrid solvers.

These conclusions only apply to the solution efficiency in regions of monotonic asymptotic non-linear

convergence and when globalization methods are not required. While many practical cases exist (particularly

for time-dependent problems) where this behavior is observed, the issues of non-linear convergence and

robustness have not been addressed herein, and may affect the performance of a non-linear method over

a linear method. Furthermore, the required Jaeobian storage for the linem multigrid approach can be

prohibitive for many applications, particularly in three dimensions.

This study is to be extended into three dimensions in the near future, and to parallel computer envi-

ronments. While the overall comparisons can be expected to be similar in three dimensions, evidence shows

that linear methods may suffer more efficiency degradation on parallel machines due to the larger number of

cheaper grid sweeps employed, which has the effect of raising the computation to communication ratio [24].

REFERENCES

[1] A. BRANDT, Multigrid techniques with applications to fluid dynamics:1984 guide, in VKI Lecture Series,

Mat'. 1984, pp. 1-176.

[2] P. N. BROWN AND C. S. WOODWARD, Preconditioning strategies for fully implicit radiation diffusion

with material energy transfer, Tech. Report UCRL-JC-139087, Lawrence Livermore National Lab,

May 2000.

[3] G. CAI_RE, An implicit multigrid method by agglomeration applied to turbulent flows, Computers and

Fluids, 26 (1997), pp. 299 320.

19



[4]W.HACKRt:SH,Multigrid Methods and Applications, Springer-Verlag, Berlin, Germany, 1985.

[5] A. JAMLSON, Solution of the Euler equations by a multigrid method, Applied Mathematics and Com-

tmtation, 13 (1983), t)P- 327-356.

[6] D. A. KNOIA,, W. J. RIDER, AND G. [,. OI,SON, An efficient nonlinear solution method for nonequi-

librium radiation diffusion, J. Quant. Spec. and Rad. Trans., 63 (1999), pp. 15 29.

[7] M. LALLFMAND, H. SrEVE, AND A. DE_tVIEUX, Unstructured multigriddin9 by volume agglomeration:

Carv'ent ,status, Computers and Fhfids, 21 (1992), pp. 397-433.

[8] L. MARTINEI,I,I AND A. JAMESON, Validation of a multigrid method for the Reynolds-averaged Na_ner-

Stokes Equations. AIAA Paper 88-0414, Jan. 1988.

[9] D. J. MAVJ_,II'HS, Multi.qrid techniques for unstructured meshes, in VKI Lecture Series VKI-I,S 1995-02,

Mar. 1995.

[10] --, Multigrid strategies for viscous flow solvers on anisotrpic nnstruetTtred meshes, Journal of Com-

putational Physics, 145 (1998), pp. 141 165.

[11] --, On convergence acceleration techniques for unstructured meshes. AIAA Paper 98-2966, presented

at the 29th AIAA Fluid Dynamics Conference, Albuquerque, NM, June 1998.

[12] --, Directional ag91omeration multigrid techniques for high-Reynolds number _iscous flows, AIAA

Journal, 37 (1999), pp. 1222 1230.

[13] D. J. MAVRIPLIS AND S. PIRZADEH, Large-scale parallel unstructured mesh computations for 3D hi9h-

lift analysis, A1AA Journal of Aircraft, 36 (1999), pp. 987-998.

[14] V. A. MOUSSEAU, 1_). A. KNOLL, AND _t,W.J. RIDER, Physics-based preconditioning and the Newton-

Krylov method for non-equilibrium radiation diffusion, Journal of Computational Physics, 160

(2000), pp. 743-765.

[15] I-,:. J. NIEI,SEN, W. K. ANDERSON, 1)t. _W. \¥A1,TERS: AND D. E. KEYES, Application of Newton-Krylov

methodology to a three-dimensiortal unstructured Euler code, in Proceedings of the 12th AIAA CFD

Conference, San Diego, CA, 3une 1995. AIAA Paper 95-1733-CP.

[16] N. PIERCE. M. GI1.ES, A. JAMESON, AND L. MARTINEI,I,1, Accelerating th.rce-dimensional Navier-

Stokes calculations, in Proceedings of the 13th AIAA CFI) Conference, Snowma,ss Village, CO,

June 1997. AIAA Paper 97-1953.

[17] D. J. T. PULHAM AND P. BUNIN_3, Recent enhancements to OVERFLOW. AIAA Paper 97-0644, Jan.

1997.

[18] M. RAW, Robustness of coupled algebraic multigrid for the Navier-Stokes equations. AIAA Paper 96-

0297, .lan. 1996.

[19] P. L. ROE, App_vzimate Riemann solvers, parameter vectors and difference schemes, J. Comp. Phys.,

43 (1981), pp. 357-372.

[20] 3. %'. RUGE AND K. STiSBEN, Algebraic multigrid, in Multigrid Methods, S. F. McCormick, ed., SIAM

Frontiers in Applied Mathematics, Philadelphia, 1987, SIAM, pp. 73-131.

[21] Y. SAAD, lterative Methods for Sparse Linear Systems, PWS Series in Comlmter Science, PWS Pub-

lishing Company, Boston, MA, 1996.

[22] W. A. SMITIt, Multigrid solution of transonic flow on unstructured grids, in Recent Advances and

Applications in Comtmtational Fluid Dynamics, Nov. 1990. Proceedings of the ASME Winter

Annual Meeting, O. Baysal, ed.

[23] P. R. SPALART AND S. R. ALLMARAS, A one-equation turbulence model for aerodynamic flows, La

Recherche A6rospatiale, 1 (1994), pp. 5 21.

20



[24]I,. STAI,S, The parallel sohttion of radiation transport equations, in Proc. of the Tenth SIAIVl Conference

on Parallel Processing for Scientific Computing, Portsmouth, VA, Mar. 2001.

[25] .1. L. THOMAS, D. L. BONHAUS, AND _V. K. ANDERSON, An (O)(n'm 2) plane solver far the compress-

ible Navier-Stokes equations. AIAA Paper 99-0785, 37th AIAA Aerospace Sciences Meeting, Reno

NV, Jan. 1999.

[26] E. TUKKEL. Preconditioning-squared methods for multidimensional aerodynamics, in Proceedings of the

13th AIAA CFD Conference, Snowmass, CO, .lune 1997, pp. 856-8fifi. AIAA Paper 97-2025-CP.

[27] B. VAN LEER, V_,'. T. LEE, AND P. ROE, Characteristic time-stepping or local preconditioning of the

Euler equations, in Proceedings of the 10th AIAA CFD Conference, llonolulu, llW, June 1991,

pp. 260 282. AIAA Paper 91-1552-CP.

[28] B. VAN LEER, C. H. TAI, AND K. G. POWELL, Desi.qn of optimally-smoothing multi-stage schemes

for the Euler equations. AIAA Paper 89-1933, June 1989.

[29] V. VENKATAKRISIINAN AND D. J. MAVRIPLIS, Implicit solvers for unstructured meshes, Journal of

Computational Physics, 105 (1993), pp. 83-91.

[301 --., Agglomeration multigrid for the three-dimensional Eule, r equations, .41.4.4 Journal, 33 (1995),

pp. 633 640.

[3i] L. B. i/VIGTON. N..1. Y(_, AND D. P. YOt;NG, GMRES acceleration of computational fluid dynamic

codes, in Proceedings of the 7th AIAA CFD Conference, .iuly 1985, pp. 67 74. AIAA Paper 85-

1494-Cl'.

21



REPORT DOCUMENTATION PAGE
Form Approved

OMB No 0704-0188

PubliCreport,ngborden for this collectionof informationis estimated to average1 hour per response,,ncludinKthe time |or reviewinK instrucDons,searchingexisting data sources,
gathering and maintaining the data r_eeded,and completingand reviewing the collectionOf information. Send comments regarding th,s burden estimate or any other aspect of this
collectionol ,nlormat_on,including suggestions for reducing this burden, to Washington HeadquartersServlces,Dir_lorate for InformationOperations aeMReports, 1215 Jefferson
DavisHighway, Suite 1204, ArfMgton, VA 22202-4302, and to the Office crl Managementand Budget, Paperwork Reduct.onProJect(0704-0188}, Washington. DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 2001 Contractor Report

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

An assessment of Linear versus non-linear mulL]grid methods for

unstra:¢:tured mesh solvers

6. AUTHOR(S)

Dimitri 3. Mavriplis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ICASE

_,Iai] Stop 132C

NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

La,gley Research Center

Hampton, VA 23681-2199

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 2001-12

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-2{)OI-210870

ICASE Report No. 2001-19

tl. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

Submitted to the Journal of Computational Physics.

12a. DISTRIBUTION�AVAILABILITY STATEMENT

Unclassified-- L'nlimit ed

Subject CategoD' 64

Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

I2b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The relative pefformauce of a non-liuear FAS nmltigrid algorithm mid an equivalent linear multigrid algoritl, m for

soMng two different non-liueax prublen]s is investigated. The first ease consists of a transient radiation-diffusion

problem for which an exact linearization is available, while the second problem involves the solution of the steady-

state Navier-Stokes equations, where a first-order discrete Jacob]an is employed as an approximation to the Jacob]an

of a second-order accurate discretization. When an exact line_ization is employed, the linear and non-line,xr multigrid

methods converge at identical rates, ,xsymptoticMly, and the linear method is found to be more efficient due to its

lower cost per cycle. When ail approxiu]ate linearization is employed, ms in the Navier-Stokes cases, the relative

efficiency of the linear approach versus the non-linear approach depends both on the degree to which the linear

system approximates the fltll &ux)bian as well as the relative cost of linear versus non-linear multigrid (3,ck_. For

cases where convergence is limited by a poor Jacob]an approximation, substantial speedup can be obtained using

either multigrid method as a preconditioner to a Newton-KD'lov n]ethod.

14. SUBJECT TERMS

unstructured, nmltigrid, Krylov

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATIOI_

OF THIS PAGE OF ABSTRACT

Unclassified

1S. NUMBER OF PAGES

26

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

'Standard Form 298(Rev, 2-89)
Pre_r,bed by ANSI Std. Z39 18
298 102


